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Abstract. With the help of scaling methods. a general relation is established between the 
thermodynamic pressure and the mechanical pressure tensor of an equilibrium one-component 
plasma in a magnetic field. The mechanical pressure tensor is shown lo be anisotropic. A general 
proof of the compressibility sum rule for a magnetized quantum plasma is presented. Finally, 
fourth-order wavenumber inequalities for the static charge correlation function xe derived. 

1. Introduction 

The pressure of a fluid system in equilibrium can be defined in several alternative ways. 
One way is via the microscopic pressure tensor, of which the divergence appears in the 
equation of motion for the momentum density. Performing the ensemble average, we arrive 
at the so-called mechanical pressure tensor. 

A different standard way to define the equilibrium pressure is by taking the volume 
derivative of the free energy, which follows from the canonical partition function. In this 
way, one gets the thermodynamic pressure, which is a scalar quantity for fluid systems. 

The normal way to establish a relation between the two pressures is via the virial 
theorem. For classical systems, the pressures turn out to be equivalent. For quantum 
systems, the proof of the equivalence is not so simple. There was much debate in the fifties 
concerning the details of the proof of the quantum-mechanical virial theorem for fluids of 
neutral particles with short-range interactions; however, this was eventually settled [I, 21. 
For the electron gas, with long-range Coulomb interactions, the presence of the uniform 
background has to be taken into account 131. 

When a magnetic field is present in an electron gas, the virial theorem loses its validity; 
this was demonstrated for the two-dimensional case in 141. Furthermore, the mechanical 
pressure tensor may become anisotropic in the presence of a magnetic field, as was shown 
for a free electron gas in a magnetic field 15.61. 

In this paper, we will derive a general relation between the mechanical pressure tensor 
and the thermodynamic pressure for an equilibrium one-component quantum plasma in a 
magnetic field. This relation will be established with the use of scaling methods in section 3. 
It is valid for all densities and temperatures for which the plasma is in a fluid phase. As a 
result, the mechanical pressure tensor is found to be anisotropic for the interacting plasma 
in a magnetic field. The anisotropy will be shown to be caused by the Landau diamagnetic 
effect so that it is a pure quantum effect. 

The existence of inequivalent pressures implies the existence of different compressibil- 
ities. In section 4, it will be demonstrated which compressibility enters the compressibility 
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sum rule for the charge fluctuations. This is achieved by combining the scaling methods 
of section 3 and the microscopic equations of motion. For a vanishing magnetic field, the 
mechanical and the thermodynamic compressibilities coincide. The compressibility rule 
then has the same form as for a classical plasma, as was argued previously in [7]. A review 
of the compressibility rule for classical plasmas can be found in [8]. 

The compressibility rule gives information on the long-wavelength limit of the charge 
response function, which is an integral of the charge correlation function over imaginary 
times. Using inequalities derived in [9-1 11, one may also obtain information on the equal 
time or static charge correlation function in the form of upper and lower bounds. For the 
unmagnetized plasma, these bounds will be established in section 5. 

The system we will be investigating is a quantum-mechanical plasma in a classical 
external magnetic field. The field is  taken to be time-independent and homogeneous. The 
system is assumed to be in full equilibrium so that all its properties are independent of 
time. As a model, we will consider the one-component plasma (OCP). It consists of N 
interacting particles of charge e and mass m that move in a neutralizing inert background. 
The spin of the particles will be neglected. The background, which is assumed to be free 
of impurities, has a charge density -qv = -en = - e N / V  where V is the volume of 
the system. We suppose the system to be in the fluid phase. Our treatment will take full 
account of the effects of quantum statistics. The results will be valid for arbitrary values of 
the magnetic-field strength and for any temperature and density in the fluid range. 
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2. Equations of motion 

In this section, the equations that will be the starting point for the rest of the paper will be 
reviewed. The Hamiltonian of the magnetized oCP reads 

Here, pc and T, are the momenta and positions of the particles and n is the number density. 
The vector potential A describes the magnetic field B in an arbitrary gauge. The prime at 
the summation indicates that the (a = B)-term is excluded. 

The charge density and the current density are defined by 

where we have introduced the mechanical momentum re = p ,  - (e/c)A(ra). The 
curly brackets denote the anti-commutator. The charge density and the current density 
are connected by the following equation of motion, which is just the continuity equation 

1 -[H, Q(T) ]  = -V J ( r ) .  
h (4) 
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The equation of motion for the current density reads 
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The quantities T and F appearing on the right-hand side are defined as follows. First. we 
have T := Tkn + Tpolr where Tun is the kinetic pressure tensor 

The divergence of the potential pressure tensor can be written as 

in which we introduce the abbreviation 

Lastly, F appearing in (5) is the force density 

e 
F(T)  = -n d3r' 0, Q (T'). 4 n l ~  - T ' I  

The implicit definition of the potential part of the pressure tensor can be tumed into an 
explicit definition. The function D(T, T')  occurring in (7) is symmetric under an interchange 
of its arguments. In fact, to bring about this feature we had to split o f f  the force density. 
Owing to the symmetry, we can write [I21 

TPot(v) = -f L 'dASd 'x  (zVZ&)Bv (T - $Az)Bv (T+  (1 - $A) z) 

x D (T - f h z ,  T + (1 - $A) z)  (10) 

where BV is the characteristic function of the volume V ,  which is equal to 1 for arguments 
inside V and equals 0 elsewhere. We assume that the region V is convex, so that the potential 
pressure tensor vanishes outside V .  If we integrate the potential part of the pressure tensor 
over the volume, the h-integral drops out: 

Note that both the potential part and the kinetic part of the pressure tensor are symmetric. 
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3. Mechanical and thermodynamic pressure 

In this section, we will establish a general relation between the mechanical pressure tensor 
and the thermodynamic pressure. The mechanical pressure tensor is the ensemble average 
of the microscopic pressure tensor that has been defined in the previous section in (6) and 
(IO). The thermodynamic pressure is defined via a volume derivative of the free energy in 
the usual way. 

To find a general relation between the two pressures, one has to write the thermodynamic 
pressure as the ensemble average of a microscopic quantity, like the mechanical pressure. 
A convenient way to achieve this is by carrying out the differentiation of the kee energy 
through a scaling method. For neutral-particle systems with short-range interactions, this is 
the standard way to derive the virial theorem. A general discussion of the virial theorem in 
all its varieties may be found, for example, in [13]. Once the virial theorem is established, 
the equivalence of the mechanical pressure tensor and the thermodynamic pressure follows 
immediately. Along these lines, the equivalence of the two pressures for neutral-particle 
systems has indeed been proved [1,2]. For systems of charged particles, however, the 
general argument to prove the equivalence of the two pressures cannot be taken over as 
such, at least not if a magnetic field is present. Nevertheless, the same scaling method can 
be used in this case to derive a more general relation between the two pressures, as we will 
hereafter show. 

Let us consider a variation of the volume as follows. The boundary is scaled from 
r W  to r w  + S E  . rw, where 8e is a deformation tensor. As a result, the volume varies as 
SV = VtrSe. Furthermore, the free energy changes by an amount 
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1 Sf = - xSE.e-aEn 
N =  n 

where SE, is the shift of the energy eigenvalue E,. To determine this shift, one has to solve 
the Schradinger equation for the Hamiltonian (1) with the deformed boundary conditions. 
Therefore, we also introduce new position variables r& in the Schradinger equation, such 
that all r& lie inside the 'old' volume V. So 

r, --f r& = r, - B E .  r,. (13) 

When we consider the energy eigenfunctions as functions of the new positions r:, we can 
write the change in the energy eigenvalues as 

SE, = ($nlSHI$n). (14) 

Here, SH is the variation of the Hamiltonian at fixed values of the position variables ri. 
Under the deformation (13), the momentum scales as 

p , + p : , = p , + S Z . p u .  (15) 

If we insert the vector potential 

A(rd = $I3 A + V.x(r.) (16) 

with an arbitrary gauge function x ,  we can write the variation of the mechanical momentum 
according to (13) and (15) as 

6rr.  = - S i .  re + -[(SE. B )  A r, - (trSe)B A re] - -V.[r, * S E .  V,x(ru)]. 
e e 

2c C 
(17) 
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The variation of the kinetic part of the Hamiltonian can then be calculated to be 

6Hun = -66 : J, d3r Tun(?-) - (trSe)S. d3r M ( P )  + B. Sa. L d 3 r  M ( P )  

where we recognize the kinetic pressure tensor and where we have introduced the 
microscopic magnetization density M 

Along similar lines, one can easily show that the variation of the potential part of the 
Hamiltonian yields 

6HPot = --SE : /3 d3rTpOt(r). (20) 

Substituting (18) and (20) in the expression for the variation of the free energy (12) 

(21) 

where U is the unit tensor and U = V / N  is the volume per particle. Furthermore, we have 
introduced the volume-averaged mechanical pressure tensor 

with (14), we find that the gauge-dependent term in (18) drops out, so that we get 

Sf = - U S €  : (P - sM + B. MU) 

P := V -  d3r (T(r))  V - ]  (T(k = 0)) 'S  

' J  
and the volume-averaged macroscopic magnetization density M 

M := V -  d3r ( M ( r ) )  V- ' (M(k  = 0)). 

Clearly, the volumeaveraged mechanical pressure tensor is equal to the uniform bulk v&e 
of the mechanical pressure tensor (T(P)), where P is an arbitrary position in the bulk, since 
surface effects in the pressure will only be manifest in a thin layer near the boundary. On 
the other hand, the volume-averaged magnetization density is certainly not equal to the 
bulk value of the macroscopic magnetization density ( M ( r ) ) .  In fact, the latter vanishes. 
All contributions to the total macroscopic magnetization and, hence, to its volume average 
originate from a thin layer near the boundary, where considerable macroscopic electric 
currents circulate. These currents give rise to the Landau diamagnetic effect in the system. 

For fluid systems, the free energy per particle should be dependent on the volume of the 
system only and not on its shape. So, the variation of the free energy should only depend 
on the trace of the deformation tensor S E .  Since one has 6u = utrSe,  we have found 

P - sM+ B. Mu = pu. (22) 

As a consequence, we can write the bulk mechanical pressure tensor as the sum of an 
isotropic part and an anisotropic part 

P = PBU - :8PB(U - .hi) (23) 
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where E is a unit vector in the direction of the field and where the scalar coefficients are 
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We have proved that the (volume-averaged or bulk) mechanical pressure tensor is indeed 
anisotropic. It consists of an isotropic part that is trivially related to the thermodynamic 
pressure and an anisotropic part that is determined by the (volume-averaged) macroscopic 
magnetization density. For a diamagnetic response 6 p ~  is negative. This means that the 
pressure in a direction transverse to the magnetic field is larger than that in a direction 
parallel to the field. 

The relation between the mechanical and the thermodynamic pressure that has been 
obtained above is completely general. It is valid both for the interacting and the free 
electron gas in a magnetic field. For the latter rather special case, the anisotropy in the 
mechanical pressure and its relation to the magnetization has been found before via an 
explicit calculation [S,6]. It should be noted that for classical systems in equilibrium, the 
pressure is always isotropic due to the Bohr-van Leeuwen theorem. Hence, the anisotropy 
for an equilibrium plasma found here is a pure quantum effect. Of course, for magnetized 
plasmas out of equilibrium, one often encounters an anisotropic pressure tensor, even in the 
classical case. Examples of such systems are well known from Vlasov theory. However, the 
anisotropy in that case has an altogether different cause. It can be due, for instance, to the 
occurrence of different temperatures for the velocity distribution functions in the directions 
parallel and orthogonal to the magnetic field, as may be the case if collisions are me. 

4. Compressibility relation 

In this section, we shall prove a relation between the derivative of the ensemble average 
of an operator with respect to the density and the (Kubo-transformed) correlation function 
of the same operator and the charge. This relation enables us to find exact sum rules for 
the correlation functions, which can serve as touchstones to assess approximations used 
in obtaining frequency-dependent correlation functions. Furthermore. they are essential 
in deriving the long-wavelength collective modes of the system via the Mori-Zwanzig 
projection method [ 141. 

The relation we are after will be established via the scaling arguments used in the 
previous section. With the help of this relation, we will be able to find the fourth-order 
term in the wavenumber expansion of the Kubo-transformed charge autocorrelation function 
I C V - ’ ( Q ( L ) Q ( - ~ ) ) T ,  with K: denoting the Kubo transform and T denoting truncation. It 
has been argued that this fourth-order term has the same form as the fourth-order term in 
the structure factor of the classical OCP, at least for the unmagnetized plasma 171. 

We start with an identity for an arbitrary local operator R: 

The bracketed superscripts (n)  mean that we consider the coefficient of the nth term in 
the wavenumber expansion. Furthermore, wp is the plasma frequency and 0 the angle 



Pressure and compressibility in a quantum OCP 6059 

between the wavevector and the magnetic field. Identity (26) can be derived [15] from the 
Fourier-transformed counterparts of the equations of motion (4) and (5). Multiplying these 
equations with an operator 52 and taking the Kubo-Wansformed equilibrium average, one 
may employ an identity valid for all operators A and B 

(27) 
1 1 

K y ( [ H ,  A(k)lB(-k))r  = F ' y  ( [ W - k ) ,  A(k)l). 

Upon solving the resulting equations for Kf(S2(k)Q(-k))$)  in successive order of the 
wavenumber, we end up with (26). 

The commutator on the right-hand side of (26) can be evaluated explicitly for operators 
of the type 

and 

npat(r) = ~ ' d A / d 3 r f ( x ) e v ( r -  $h)8v(r+(1 - $ A ) z ) D ( r -  $Ax,r+(l -;A)=). 

(2% 

These are one-particle operators depending on the (mechanical) momentum and two-particle 
configurational operators with background terms and a A-integration, respectively. In the 
former, one has to properly symmetrize the ?r factors and the delta function. Both the 
charge density and the current density are of the form fib", while the microscopic pressure 
tensor is the sum of operators and fiPot. 

For the calculation of the commutator of 5 2 ~ ~  with J ,  we use the identity 

[?re .h, f(?re)l= 0 (30) 

which follows from [n;, xi] = (ieh/c)djkBk. Then, one finds 

1 efi 1 
-([52bn(k), J ( - k ) .  h]) = --kcos9-(fi,.(k = 0)) 
V m V 

- -( e ~ h k  g [e-ik~=, [eik.r=, f(?re,]1) 

-&(g g, {[eik'r-, f(?r,)l ,e-ik'r-l]). (31) 

In leading (first) order in k. the second term on the right-hand side vanishes and we find 
for operators Q(k) = 52bo(k) 

4mV (I 

I) 1 eh 1 
V V 
-([Q(k) ,  J ( -k ) -h ] ) ( ' )  = ;~0~9-(52(k  C?r. .Br , .k ,Q(k= 0) . 
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In particular, if we take Qk&) to be the kinetic part of the pressure tensor, we get 

1 
-([Tkn(k), J ( - k )  . B])(l) 
V 

P John and L G Suttorp 

eh 1 
m V  

- - -- [(Tk,,(k = 0))k  * B + ,&B. (Tho@ = 0)) + B. (Tk,(k = O))k ] .  

(33) 

In the first instance, the evaluation of the commutator of apt with the current density 
leads to 

1 
-(IQpot@L J ( - k )  . B1) V 

= /”’ dh/d3r /” d’x [[(I - ih)e-i(A/2)k’2 + ~~ei(1-(A/2))k’z 2 1 k . &f(z)  
m o  

\ i [,-i(A/Z)k.= - ei(l-(h/2))k.z . v,f(=) 1 - 

1 
V 

x ev(T - i hz )ev ( r  + (1 - $)z)-(D(T - f h o , r +  (1 - 4h)z)). (34) 

In zeroth order ink ,  the commutator vanishes as expected. In first order the commutator 
reads 

-KQpot(k), J(-k)  . &)(’) 
1 
V 

1 
V 

x &(T - $hr)@v(r  + (1 - fh)z)-(D(r - +Ax, T + (1 - 4h)r)) .  (35) 

We can write the last term as the average of the commutator of Qp2,,(k = 0) with 
E, 7ra. ,&, as one can verify by explicit calculation. So one ends up with expression 
(32) again, which, hence, is valid for both types of operators. 

Let us now consider the variation of the average of an operator QbO or Qpt for a 
changing volume. After rescaling the particle positions and momenta, as in the previous 
section, the Hamiltonian H is replaced by H t SH. Since (Q) = tr (pQ),  with the density 
operator p defined as p = exp(-gH)/tr[exp(-gH)], we see that the rescaling amounts to 
replacing H by H + SH and Q by Q + 6Q. Using a well known Kubo formula to rewrite 
the ‘new’ density operator, we find 

1 6V 1 
8 - ( n ( k = O ) )  = - g l c - ( Q ( k = 0 ) 6 H ) T - - ( ( n ( l c = 0 ) ) t - ( ( 6 Q ( ] E = 0 ) )  (36) [: I V  V2 V 

where the second term on the right-hand side arises from varying the factor V-l. 

operators, 
Evaluation of the variation of the operator Q(k = 0) gives, for momentum-dependent 
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where the terms in the derivative should be ordered in such a way that each factor ?F, in turn 
is replaced by 8ne. The variation of the mechanical momentum is given in (17). The 
average of the variation of operators Qknr as given in (37), can be written as a commutator: 

If we substitute (38) and (18)-(20) in (36), we see that the gauge-dependent part K drops 
out. One gets for C2 = Qk0 

1 
6 - ( Q ( l c = O ) )  = p K - ( Q ( k = o )  [: I V  

(39) 

The variation of configurational operators QPt can be found directly by rescaling both 
r,, o and T in the way given in (13). It reads 

1 

-{Ss2,,,(k=O)) 1 =I d L S d 3 r S d 3 x [ s . S E . 0 , 1 ( o ) ] s v ( r -  4Az)Bv(r+(1 - $A)=) 
V 0 

(40) 
1 
V 

x -(D(T - ;AX. r + (1 - $A)%) ) .  

Just as in the calculation of the commutator of the current density with apt, we can rewrite 
this last equation as a commutator: 

Substituting (41) and (18)-(20) in (36), we see thai the gauge-dependent part x drops 
out again. We can write the commutator in the last equation in the same way as the 
commutator appearing in the last term of (39), since the extra term depends only on the 
position. Therefore, it commutes with Qpot and we find that expression (39) is valid for 
both types of operators. 

The variation of the volume-averaged equilibrium value o f a  local operator Q, as given 
by (39), can only depend on the change of the density (or the volume) and not on the change 
in shape of the system. Hence, the right-hand side should depend on the deformation tensor 
through its trace only. Therefore, we may choose SE in a convenient way. Let us take 
Sa = BkS6 with a scalar 66. With this choice, the field-dependent terms drop out in (39). 
The final result is then 

1 
V 

= O ) ~ B ) ~ ~ E - C C O S B - ( Q ( ~ = O ) ) ~ E  
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valid for both types of operators. 

which can be rewritten as 

P John and L G Suttorp 

Using (26), (32) and (42), we arrive at an expression for the variation of an operator 

This is a general expression for the derivative of the ensemble average of a volume 
averaged operator with respect to the density. On the right-hand side, the Kubo-transformed 
correlation function for the operator and the second-order wavenumber charge density 
appear. For a classical one-component plasma, a similar relation was derived on the basis 
of identities for configurational correlation functions [16]. The scaling method described 
above can be applied to the classical case as well. 

Relation (43) may be called the generalized Stillinger-Lovett relation. In fact, as an 
example of the use of (43). one may substitute Q ( k )  = Q ( k )  + eN&,o. In that case, 
the derivative on the left-hand side gives a trivial result. As a consequence, one recovers 
the well known Stillinger-Lovett relation for the second-order term in the wavenumber 
expansion of the Kubo-transformed charge autocorrelation function 

(44) 

The general relation found above can also be used to obtain a result for the fourth-order 

Kv(Q(k)Q(-k) )$*)  1 = f i - ' .  

wavenumber charge autocorrelation function. In fact, employing the identity 

which can be derived [ 151 from the equations of motion in a similar way as (26), we can 
write the fourth-order term of the charge autocorrelation function as 

With the use of (23). we may transform the right-hand side to -(1/fimo;)apBpn. So we 
have found 

where the isothermal compressibility is defined as K;' = n(aps/an) at constant B and 
p.  The last equation is the compressibility sum rule we wanted to derive. It contains 
the derivative of the component of the volume-averaged mechanical pressure tensor in 
the direction of the field. The latter is equal to the thermodynamic pressure, as we have 
seen in (24). Hence, the fourth-order term in the wavenumber expansion of the Kubo- 
transformed charge autocorrelation function has indeed the same form as the fourth-order 
term in the structure factor of the classical one-component plasma. It should be stressed 
that the relation (47) is valid for an equilibrium magnetized quantum plasma at arbitrary 
density and temperature, at least if the plasma is in a fluid phase. 



Pressure and compressibility in a quantum OCP 6063 

As a further example of the use of (43). one may take for R(k) the Fourier-transformed 
energy density E ( k ) .  One finds 

where ev = V-' (E(k  = 0)) is the energy density. 
Both (47) and (48) are useful for the derivation of the long-wavelength collective modes. 

In fact, the amplitudes of these modes are linear combinations of Q(k), J ( k )  and E(k).  
In deriving the modes by means of the projection-operator technique, one needs the inner 
products of these quantities that are defined as Kubo-transformed correlation functions [14]. 

5. Inequalities for the static charge correlation function 

In the previous section, we derived an expression for the fourth-order term in the Kubo- 
transformed charge Correlation function. With the use of this expression, we will show how 
information on the static charge correlation function, that is at imaginary time r = 0, can 
be obtained as well. 

We will derive our result by using general inequalities derived in [9-1 I]. In these papers, 
the authors derived upper [9] and lower bounds [IO, 111 for the static correlation function 
of general operators in terms of the static response function and moments of the spectral 
function. This is achieved as follows. One starts with the observation that the moments, 
the static correlation function and the static response function can all be written as an 
integral containing the spectral function and some other function. Knowing this, one can 
find constraints on the static correlation function in terms of suitable linear combinations of 
the moments and the static response function. In the mathematical literature, this is known 
as the generalized moment problem for Chebyshev-Markov systems. 

Written in a form suitable for our purposes, the inequalities for the static charge 
autocorrelation function read 

Ic-(Q(k)Q(-lc))~ + ~ [ $ h c O t h ( $ h )  - 1lS1 6 ,([Q(k)lz=oQ(-k)), 
1 1 1 
V 

(49) 
1 

6 ~ILcoth(fIL)XV(e(k)Q(-k) )7  

where 

S,, = B"+'(-l)"?([[H,[H, .. . , IH, Q(k)l . . .  I ,  Q(-k)I) (50) 
I n = 1,3,5, ... 

In (50), an n-fold repeated commutator with the Hamiltonian appears. 
We want to use the inequalities for small values of the wavenumber. Hence, we need the 

small-wavenumber expansions of the various quantities in the upper and the lower bounds. 
From the results of the previous section, we know 
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where ko is the Debye wavevector, kg = ne2p. This expansion has the same form, 
independent of the magnetic field. The moment SI can be evaluated in closed form: 
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SI = 0 2 2  h Opk 2 2  V k .  (54) 

It is likewise independent of the magnetic field. The next moment S3, however, does depend 
on the magnetic field. If the magnetic field vanishes, it has the expansion 

where e p  and e? are the kinetic- and the potential-energy density, respectively. For 
non-vanishing magnetic field, the leading-order terms already have a different form: 

(56) 4 4 2  z S, = p h o ~ [ o ~  + O;S~I? B]kZ + ,.. 
where O, is the cyclotron frequency. 

If we substitute the expressions (53H5.5) for the unmagnetized case in (49) and compare 
the terms in order kZ, we find that in this order the inequalities become an equality because 
the upper and lower bounds merge 

This confirms what is known already [7]. On the other hand, substituting (56) instead of 
(55), one finds that for the magnetized OCP, the bounds do not merge in second order of k .  
One i s  left with a rather uninteresting inequality. In fact, the static charge autocorrelation 
function in second order is known already 1151. 

The fact that the upper and lower bounds in second order coincide for the unmagnetized 
OCP implies that a non-trivial inequality for the fourth-order static correlation function can 
be obtained. One finds 

Here, we have introduced the function 3 ( x )  = 1 - G ( x ) +  hxG'(x), with G ( x )  = 5 coth(f). 
Note that 3 is negative definite. Since the function 3 ( x )  is of order x4 for small x ,  we 
find up to order h3 

which is equal to the result for the classical OCP. 
In higher orders of f r ,  the inequalities (58) give bounds for the static charge correlation 

function. In order for these bounds to be consistent, another inequality, which involves 
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the kinetic-energy density, the potential-energy density and the compressibility, has to be 
satisfied, namely 

The validity of this inequality can be established by noting that K ( l / v ) ( Q ( k ) Q ( - k ) ) ~ ,  SI 
and S, are moments of a positive spectral function. The Schwarz inequality gives 

which leads to (60). 
The static charge correlation function for a quantum OCP in equilibrium is known in an 

approximate form only, on the basis of more or less drastic assumptions. The inequalities 
(58) for the Fourier-transformed static charge correlation function in fourth order of the 
wavenumber are rigorous bounds, which are useful as conditions that must necessarily be 
fulfilled by any approximate expression for the static correlation function in order to be 
internally consistent. As such, the inequalities can serve as a tool in assessing the validity 
of a phenomenological or fundamental approach that leads to such an approximate version 
of the static correlation function. 
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